skip to main content


Search for: All records

Creators/Authors contains: "Meyer, Josephine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite rapid growth of quantum information science (QIS) workforce development initiatives, perceived lack of agreement among faculty on core content has made prior research-based curriculum and assessment development initiatives difficult to scale. To identify areas of consensus on content coverage, we report findings from a survey of N=63 instructors teaching introductory QIS courses at US institutions of higher learning. We identify a subset of content items common across a large fraction (≥ 80%) of introductory QIS courses that are potentially amenable to research-based curriculum development, with an emphasis on foundational skills in mathematics, physics, and engineering. As a further guide for curriculum development, we also examine differences in content coverage by level (undergraduate/graduate) and discipline. Finally, we briefly discuss the implications of our findings for the development of a research-based QIS assessment at the postsecondary level.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. Quantum information science (QIS) is an emerging interdisciplinary field at the intersection of physics, computer science, electrical engineering, and mathematics leveraging the laws of quantum mechanics to circumvent classical limitations on information processing. With QIS coursework proliferating across US institutions, including at the undergraduate level, we argue that it is imperative that ethics and social responsibility be incorporated into QIS education from the beginning. We discuss ethical issues of particular relevance to QIS education that educators may wish to incorporate into their curricula. We then report on findings from focus interviews with six faculty who have taught introductory QIS courses, focusing on barriers to and opportunities for incorporation of ethics and social responsibility (ESR) into the QIS classroom. Few faculty had explicitly considered discussion of ethical issues in the classroom prior to the interview, yet instructor attitudes shifted markedly in support of incorporating ESR in the classroom as a result of the interview process itself. Taking into account faculty's perception of obstacles to discussing issues of ESR in coursework, we propose next steps toward making ESR education in the QIS classroom a reality. 
    more » « less
  4. Frank, B. W. ; Jones, D. L. ; and Ryan, Q. X. (Ed.)
    Significant attention in the PER community has been paid to student cognition and reasoning processes in undergraduate quantum mechanics. Until recently, however, these same topics have remained largely unexplored in the context of emerging interdisciplinary quantum information science (QIS) courses. We conducted exploratory interviews with 22 students in an upper-division quantum computing course at a large R1 university crosslisted in physics and computer science, as well as 6 graduate students in a similar graduate-level QIS course offered in physics. We classify and analyze students' responses to a pair of questions regarding the fundamental differences between classical and quantum computers. We specifically note two key themes of importance to educators: (1) when reasoning about computational power, students often struggled to distinguish between the relative effects of exponential and linear scaling, resulting in students frequently focusing on distinctions that are arguably better understood as analog-digital than classical-quantum, and (2) introducing the thought experiment of analog classical computers was a powerful tool for helping students develop a more expertlike perspective on the differences between classical and quantum computers. 
    more » « less
  5. Bennet, M. ; Frank, B. ; Vieyra, R. (Ed.)
    Significant focus in the PER community has been paid to student reasoning in undergraduate quantum mechanics. However, these same topics have remained largely unexplored in the context of emerging interdisciplinary quantum information science (QIS) courses. We conducted 15 exploratory think-aloud interviews with students in an upper-division quantum computing course at a large R1 university cross-listed in the physics and computer science departments. Focusing on responses to one particular problem, we identify two notably consistent problem-solving strategies across students in the context of a particular interview prompt, which we term Naive Measurement Probabilities (NMP) and Virtual Quantum Computer (VQC), respectively. Operating from a resources framework, we interpret these strategies as choices of coherent (and potentially mutually-generative) sets of resources to employ and available actions to perform. 
    more » « less